Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.

O'Neill PR, Kalyanaraman V, Gautam N (2016) Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration. Molecular biology of the cell, ():E15-12-0832. [Epub ahead of print].

 PubMed


Optimizing optogenetic constructs for control over signaling and cell behaviours.

O'Neill PR, Gautam N (2015) Optimizing optogenetic constructs for control over signaling and cell behaviours. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 14(9):1578-85.

 PubMed


Subcellular optogenetics - controlling signaling and single-cell behavior.

Karunarathne WK, O'Neill PR, Gautam N (2015) Subcellular optogenetics - controlling signaling and single-cell behavior. Journal of cell science, 128(1):15-25.

 PubMed


Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling.

Zhao ZQ, Liu XY, Jeffry J, Karunarathne WK, Li JL, Munanairi A, Zhou XY, Li H, Sun YG, Wan L (2014) Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron, 84(4):821-34.

 PubMed


Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration.

O'Neill PR, Gautam N (2014) Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Molecular biology of the cell, 25(15):2305-14.

 PubMed


A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations.

Giri L, Patel AK, Karunarathne WK, Kalyanaraman V, Venkatesh KV, Gautam N (2014) A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations. Biophysical journal, 107(1):242-54.

 PubMed


The structure of dynamic GPCR signaling networks.

O'Neill PR, Giri L, Karunarathne WK, Patel AK, Venkatesh KV, Gautam N (2014) The structure of dynamic GPCR signaling networks. Wiley interdisciplinary reviews. Systems biology and medicine, 6(1):115-23.

 PubMed


Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension.

Karunarathne WK, Giri L, Kalyanaraman V, Gautam N (2013) Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proceedings of the National Academy of Sciences of the United States of America, 110(17):E1565-74.

 PubMed


Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration.

Karunarathne WK, Giri L, Patel AK, Venkatesh KV, Gautam N (2013) Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration. Proceedings of the National Academy of Sciences of the United States of America, 110(17):E1575-83.

 PubMed


Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension.

Karunarathne WK, Giri L, Kalyanaraman V, Gautam N (2013) Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proceedings of the National Academy of Sciences of the United States of America, ():.

 PubMed


G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

O'Neill PR, Karunarathne WK, Kalyanaraman V, Silvius JR, Gautam N (2012) G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes. Proceedings of the National Academy of Sciences of the United States of America, 109(51):E3568-77.

 PubMed


All G protein βγ complexes are capable of translocation on receptor activation.

Ajith Karunarathne W.K., O'Neill P.R., Martinez-Espinosa P.L., Kalyanaraman V., Gautam N. (2012) All G protein βγ complexes are capable of translocation on receptor activation. Biochemical and biophysical research communications, 421(3):605-11.

 PubMed


Real time analysis of protein location and function: a Golgi-specific PKD sensor.

Gautam N. (2012) Real time analysis of protein location and function: a Golgi-specific PKD sensor. Biotechnology journal, 7(1):17-8.

 PubMed


Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit.

Cho J.-H., Saini D.K., Karunarathne W.K.A., Kalyanaraman V., Gautam N. (2011) Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit. Cellular signalling, 23(5):785-93.

 PubMed


Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation.

Saini D.K., Karunarathne W.K.A., Angaswamy N., Saini D., Cho J.-H., Kalyanaraman V., Gautam N. (2010) Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation. Proceedings of the National Academy of Sciences of the United States of America, 107(25):11417-22.

 PubMed


Live cell imaging for studying g protein-coupled receptor activation in single cells.

Saini D.K., Gautam N. (2010) Live cell imaging for studying g protein-coupled receptor activation in single cells. Methods in molecular biology (Clifton, N.J.), 617():191-207.

 PubMed


G protein subunit dissociation and translocation regulate cellular response to receptor stimulation.

Chisari M., Saini D.K., Cho J.-H., Kalyanaraman V., Gautam N. (2009) G protein subunit dissociation and translocation regulate cellular response to receptor stimulation. PloS one, 4(11):e7797.

 PubMed


Shuttling and translocation of heterotrimeric G proteins and Ras.

Saini D.K., Chisari M., Gautam N. (2009) Shuttling and translocation of heterotrimeric G proteins and Ras. Trends in pharmacological sciences, 30(6):278-86.

 PubMed


A family of G protein βγ subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation.

Saini D.K., Kalyanaraman V., Chisari M., Gautam N. (2007) A family of G protein βγ subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation. The Journal of biological chemistry, 282(33):24099-108.

 PubMed


Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

Chisari M., Saini D.K., Kalyanaraman V., Gautam N. (2007) Shuttling of G protein subunits between the plasma membrane and intracellular membranes. The Journal of biological chemistry, 282(33):24092-8.

 PubMed


G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction.

Akgoz M., Kalyanaraman V., Gautam N. (2006) G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction. Cellular signalling, 18(10):1758-68.

 PubMed


G protein betagamma11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the alpha subunit type.

Azpiazu I., Akgoz M., Kalyanaraman V., Gautam N. (2006) G protein betagamma11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the alpha subunit type. Cellular signalling, 18(8):1190-200.

 PubMed


A G protein gamma subunit peptide stabilizes a novel muscarinic receptor state.

Azpiazu I., Gautam N. (2006) A G protein gamma subunit peptide stabilizes a novel muscarinic receptor state. Biochemical and biophysical research communications, 341(4):904-10.

 PubMed


Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex.

Akgoz M., Kalyanaraman V., Gautam N. (2004) Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. The Journal of biological chemistry, 279(49):51541-4.

 PubMed


A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell.

Azpiazu I., Gautam N. (2004) A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. The Journal of biological chemistry, 279(26):27709-18.

 PubMed


A conformational switch regulates receptor-G protein interaction.

Gautam N. (2003) A conformational switch regulates receptor-G protein interaction. Structure (London, England : 1993), 11(4):359-60.

 PubMed


Role of the G protein gamma subunit in beta gamma complex modulation of phospholipase Cbeta function.

Akgoz M., Azpiazu I., Kalyanaraman V., Gautam N. (2002) Role of the G protein gamma subunit in beta gamma complex modulation of phospholipase Cbeta function. The Journal of biological chemistry, 277(22):19573-8.

 PubMed


Determining G protein heterotrimer formation.

Hou Y., Chang V., Gautam N. (2001) Determining G protein heterotrimer formation. Methods in enzymology, 344():505-12.

 PubMed


Preparation and application of G protein gamma subunit-derived peptides incorporating a photoactive isoprenoid.

Kale T.A., Turek T.C., Chang V., Gautam N., Distefano M.D. (2001) Preparation and application of G protein gamma subunit-derived peptides incorporating a photoactive isoprenoid. Methods in enzymology, 344():245-58.

 PubMed


Role of G protein beta gamma complex in receptor-G protein interaction.

Azpiazu I., Gautam N. (2001) Role of G protein beta gamma complex in receptor-G protein interaction. Methods in enzymology, 344():112-25.

 PubMed


G protein gamma subunit interaction with a receptor regulates receptor-stimulated nucleotide exchange.

Azpiazu I., Gautam N. (2001) G protein gamma subunit interaction with a receptor regulates receptor-stimulated nucleotide exchange. The Journal of biological chemistry, 276(45):41742-7.

 PubMed


Role of the gamma subunit prenyl moiety in G protein beta gamma complex interaction with phospholipase Cbeta.

Fogg VC, Azpiazu I, Linder ME, Smrcka A, Scarlata S, Gautam N (2001) Role of the gamma subunit prenyl moiety in G protein beta gamma complex interaction with phospholipase Cbeta. The Journal of biological chemistry, 276(45):41797-802.

 PubMed


G Protein beta subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-beta 2/3.

Hou Y, Chang V, Capper AB, Taussig R, Gautam N (2001) G Protein beta subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-beta 2/3. The Journal of biological chemistry, 276(23):19982-8.

 PubMed


Selective role of G protein gamma subunits in receptor interaction.

Hou Y., Azpiazu I., Smrcka A., Gautam N. (2000) Selective role of G protein gamma subunits in receptor interaction. The Journal of biological chemistry, 275(50):38961-4.

 PubMed


The G protein subunit gene families.

Downes G.B., Gautam N. (1999) The G protein subunit gene families. Genomics, 62(3):544-52.

 PubMed


A G protein gamma subunit-specific peptide inhibits muscarinic receptor signaling.

Azpiazu I., Cruzblanca H., Li P., Linder M., Zhuo M., Gautam N. (1999) A G protein gamma subunit-specific peptide inhibits muscarinic receptor signaling. The Journal of biological chemistry, 274(50):35305-8.

 PubMed


Chromosomal mapping of five mouse G protein gamma subunits.

Downes G.B., Gilbert D.J., Copeland N.G., Gautam N., Jenkins N.A. (1999) Chromosomal mapping of five mouse G protein gamma subunits. Genomics, 57(1):173-6.

 PubMed


KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation.

Bell B., Xing H., Yan K., Gautam N., Muslin A.J. (1999) KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation. The Journal of biological chemistry, 274(12):7982-6.

 PubMed


G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels.

Garcia D.E., Li B., Garcia-Ferreiro R.E., Hernandez-Ochoa E.O., Yan K., Gautam N., Catterall W.A., Mackie K., Hille B. (1998) G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(22):9163-70.

 PubMed


Structure and mapping of the G protein gamma3 subunit gene and a divergently transcribed novel gene, gng3lg.

Downes G.B., Copeland N.G., Jenkins N.A., Gautam N. (1998) Structure and mapping of the G protein gamma3 subunit gene and a divergently transcribed novel gene, gng3lg. Genomics, 53(2):220-30.

 PubMed


The G-protein betagamma complex.

Gautam N., Downes G.B., Yan K., Kisselev O. (1998) The G-protein betagamma complex. Cellular signalling, 10(7):447-55.

 PubMed


Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.

Kisselev O.G., Kao J., Ponder J.W., Fann Y.C., Gautam N., Marshall G.R. (1998) Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. Proceedings of the National Academy of Sciences of the United States of America, 95(8):4270-5.

 PubMed


Structure and chromosomal localization of mouse G protein subunit gamma 4 gene.

Kalyanaraman S., Copeland N.G., Gilbert D.G., Jenkins N.A., Gautam N. (1998) Structure and chromosomal localization of mouse G protein subunit gamma 4 gene. Genomics, 49(1):147-51.

 PubMed


Structural determinants for interaction with three different effectors on the G protein beta subunit.

Yan R., Gautam N. (1997) Structural determinants for interaction with three different effectors on the G protein beta subunit. The Journal of biological chemistry, 272(4):2056-9.

 PubMed


Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

Wang J.-L., Kalyanaraman S., De Vivo M., Gautam N. (1996) Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins. The Biochemical journal, 320 ( Pt 1)():87-91.

 PubMed


A domain on the G protein beta subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel.

Yan K., Gautam N. (1996) A domain on the G protein beta subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. The Journal of biological chemistry, 271(30):17597-600.

 PubMed


Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families.

Yan K., Kalyanaraman V., Gautam N. (1996) Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. The Journal of biological chemistry, 271(12):7141-6.

 PubMed


A brain-specific G protein gamma subunit.

Kalyanaraman S., Kalyanaraman V., Gautam N. (1995) A brain-specific G protein gamma subunit. Biochemical and biophysical research communications, 216(1):126-32.

 PubMed


Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit.

Kisselev O., Ermolaeva M., Gautam N. (1995) Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. The Journal of biological chemistry, 270(43):25356-8.

 PubMed


Receptor-G protein coupling is established by a potential conformational switch in the beta gamma complex.

Kisselev O., Pronin A., Ermolaeva M., Gautam N. (1995) Receptor-G protein coupling is established by a potential conformational switch in the beta gamma complex. Proceedings of the National Academy of Sciences of the United States of America, 92(20):9102-6.

 PubMed


A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling.

Kisselev O.G., Ermolaeva M.V., Gautam N. (1994) A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling. The Journal of biological chemistry, 269(34):21399-402.

 PubMed


Characterization of antibodies for various G-protein beta and gamma subunits.

Pronin A.N., Gautam N. (1994) Characterization of antibodies for various G-protein beta and gamma subunits. Methods in enzymology, 237():482-98.

 PubMed


Design of oligonucleotide probes for molecular cloning of beta and gamma subunits.

Gallagher C., Gautam N. (1994) Design of oligonucleotide probes for molecular cloning of beta and gamma subunits. Methods in enzymology, 237():471-82.

 PubMed


Specific interaction with rhodopsin is dependent on the gamma subunit type in a G protein.

Kisselev O., Gautam N. (1993) Specific interaction with rhodopsin is dependent on the gamma subunit type in a G protein. The Journal of biological chemistry, 268(33):24519-22.

 PubMed


Proper processing of a G protein gamma subunit depends on complex formation with a beta subunit.

Pronin A.N., Gautam N. (1993) Proper processing of a G protein gamma subunit depends on complex formation with a beta subunit. FEBS letters, 328(1-2):89-93.

 PubMed


Interaction between G-protein beta and gamma subunit types is selective.

Pronin A.N., Gautam N. (1992) Interaction between G-protein beta and gamma subunit types is selective. Proceedings of the National Academy of Sciences of the United States of America, 89(13):6220-4.

 PubMed


Diversity of G proteins in signal transduction.

Simon M.I., Strathmann M.P., Gautam N. (1991) Diversity of G proteins in signal transduction. Science (New York, N.Y.), 252(5007):802-8.

 PubMed


G-protein beta gamma dimers. Membrane targeting requires subunit coexpression and intact gamma C-A-A-X domain.

Simonds W.F., Butrynski J.E., Gautam N., Unson C.G., Spiegel A.M. (1991) G-protein beta gamma dimers. Membrane targeting requires subunit coexpression and intact gamma C-A-A-X domain. The Journal of biological chemistry, 266(9):5363-6.

 PubMed


G protein diversity is increased by associations with a variety of gamma subunits.

Gautam N., Northup J., Tamir H., Simon M.I. (1990) G protein diversity is increased by associations with a variety of gamma subunits. Proceedings of the National Academy of Sciences of the United States of America, 87(20):7973-7.

 PubMed


A G protein gamma subunit shares homology with ras proteins.

Gautam N., Baetscher M., Aebersold R., Simon M.I. (1989) A G protein gamma subunit shares homology with ras proteins. Science (New York, N.Y.), 244(4907):971-4.

 PubMed


The 35- and 36-kDa beta subunits of GTP-binding regulatory proteins are products of separate genes.

Amatruda III T.T., Gautam N., Fong H.K.W., Northup J.K., Simon M.I. (1988) The 35- and 36-kDa beta subunits of GTP-binding regulatory proteins are products of separate genes. The Journal of biological chemistry, 263(11):5008-11.

 PubMed